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SUMMARY

In order to investigate the deviation of flow surfaces from thelr
assumed orientation in the usual type of two-dimensional solution, three-
dimensional, incompressible, nonviscous, absolute irrotational fluid
motion is determined for flow through rotating axial-flow. passages
bounded by straight blades of finite spacing and infinite axial length
lying on meridional planes. Solutions are obtained for five passages
with varying blade spacing and hub-tip ratioc. The results are presented
in such a menner as to apply for all ratios of axial velocity to passage
tip speed. It is concluded that, for conditions in typical axial-flow
blade rows, the deviation of flow surfaces from thelr assumed orienta-
tion in two-dimensional solutions is small.

INTRODUCTION

A flow surface in the passage between two blades of a compressor
or turbine 1is generated by the motion through the passage of any fluid
line consisting of the same fluid particles and extending from one
boundary to another in a plane normal to the axis of rotation. In two-
dimensional analyses of flow in compressors and turbines, the fluid
motion is usually assumed to occur on flow surfaces that are: (1) sur-
faces of revolution about the axis of the turbomachine (blade-to-blade
solutions, references 1 and 2, for example) or (2) mean passage surfaces
thet are congruent with the mean blade surfaces (hub-to-shroud solutions,
references 3 and 4, for example) . Actually, the flow surfaces deviate
from the orientation assumed for the two-dimensional solutions and, in
the direction of flow, become progressively more tilted and distorted.
This devietion of the flow surfaces from their assumed orientation is
caused by spanwise variations of blade loading and, in rotating blade
rows, by rotation of the fluid particles relative to the passage in a
plane normal to the axis of the blade row. This rotation is required
to maintain the rotational or irrotational character of the absolute
fluid motion.
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The deviation of flow surfaces 1s considered in reference 5, but no
attempt is made to estimate the magnitude of this phenomenon. An ana-
lytical investigation has therefore been made at the NACA Lewis labora-
tory in order to determine the magnitude of this deviation in rotating
axial -flow passages. The axiasl-flow passages in this investigation are
bounded by straight blades of finite spacing and Infinite axial length
lying on meridional (axial-radial) planes. The solutions have been made
for three-dimensional, incompressible, nonviscous, gbsolute irrotational
fluld motion over a range of blade spacings and hub-tip ratios. These
solutions do not investigate the effect of spanwise distribution of blade
loading, which was considered of secondary importance. - (Note that, as in
rectangular elbows with potential flow, uniform spanwise loading hes no
effect on the deviation.of flow surfaces.) Likewise, the effects of -
compressiblility have not been investigated because, as clearly indicated
by the correlation equations In reference 1, the eddy flow, which causes
the flow surfaces to deviate, is 1little affected by compressibility.

The results are presented in such a manner as to epply to any ratio of
blade-tip speed to axial velocity of the fluid. '

METHOD OF SOLUTION

The method of solution, including the relaxation solution of the
differential equation of flow and the superposition of solutions, is
developed in this section.

Preliminary Considerations

Assumptions. - The absolute flow is essumed to be irrotational.
The fluid is assumed to be nonviscous and incompressible. The fluid
motion is three dimensional and is steady relative to the rotating

passage-

Coordinate system and velocity components. - The cylindrical
coordinate system r, 6, z 1is shown in figure 1. (All symbols are
defined in appendix A). The linear coordinates r and z are expressed
as ratios of the blade-tip radius. Thus, for example, the radius
at the blade tip is unity. The coordinate system is fixed relative to
the passage which rotates about the z-axis in the positive direction
according to the right-hand rule.

The velocity components u, v, w relative to the coordinate system
in the 1, 6, z directions, respectively, are also shown in figure 1.
The velocity components and the blade speed are expressed as ratios of
the blade-tip speed. Thus, for exsmple, the blade speed at any radius
is equal to r and the absolute tangential velocity component becomes

(v+r1).
o
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Type of passage geometry. - The rotating axlal-flow passages in
this investigation are infinitely long. Each passage is bounded by a
hub and casing of constant radius, respectively, and by straight blades
of finite spacing and infinite length lying on meridional (axial-radial)
planes. The blade inlet is considered to be at minus infinity in the
z-direction and the blade exit at plus infinity. Under these circum-
stances the flow is uniform in the z-direction at the region investi-
gated (near the origin, z = O) and the blade loading is zero. Thus,
effects of blade loading on deviation of the flow surfaces are not inves-
tigated in this report. These effects are considered of secondary
importance.

Superposition of solutions. - For the passage geametry just
described, the incompressible flow solution can be separated into two
parts: (1) the rotating or eddy-flow solution in the rotating passage
with no through flow and (2) the through-flow solution in the station-
ary passage with no eddy flow. The eddy-flow solution does not change
in the z-direction and is therefore two dimensional. The through-flow
solution is & uniform axial velocity w. Various percentages of the
two solutions cen be combined by linear superposition to obtain new
solutions for different ratios of axial velocity to blade-tip speed,
that is, for different values of w.

)

Eddy-Flow Solution
The eddy-flow sélution is two dimensional and lies in the rO-plane.

Continuity. - A fluid particle on the r6-plane is shown in figure 2.
From continuity considerations

d ov
6—1‘- (I‘Ll) +~5—6' =0 (l)
A stream function V¥ satisfies equation (1) if defined as

g—g = ru (2a)

%% = -v (2p)

Irrotational absolute motion. - For irrotational absolute motion,
the circulation of the absolute velocity around the fluid particle in
figure 2 is zero, and therefore

gaflz(r+v)r:|—%l§l=0
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or
ov ., v 10du_
S*tr ros- ? (3a)
which, after substitution of equation (2), becomes
2 2
O¥  1o¥, 1 o¥ _,- (3b)

Equation (3b) is the differential equation of flow that determines the
distribution of ¥ <for the eddy-flow solution in the ré-plane.

Transformation of coordinates. - In order to solve equation (3) by
relaxation methods, it is convenlient to transform the rf-plane onto the
£ 0-plane by means of )

E:lnr (4)
from which equation (3b) becomes

2 2
: i (5)

d2 362

Relaxation solution. - Equation (5) is solved by relaxation methods

(references 6 and 7, for example) to satisfy the specified boundary
conditions. For the eddy-flow solutions, there is no flow through the
passage so that ¥ 1is zero along the hub, shroud, and blade surfaces.
In the E9-plane these boundaries form a rectangle within which is placed
a grid of equally spaced points. At each of these grid points the value
of ¥ required to satisfy equation (5) in finite difference form is
determined by relaxation methods. The size of the grid spaclng variles
among examples and will be indicated later. The values of V¥ at the
grid points were relaxed to a unit change in the fifth decimal. The
velocity components are obtained from the distribution of V¥ according
to equation (2). The streamlines of the eddy flow in the ro-plane are
lines of constant V. ‘

Combined Solutions

For the eddy-flow solutions on the r6-plane, the fluid rotates
relative to the passage walls in a directlion opposite to that of the
blade rotation. This fluid motion is the same for all planes normal to
the z-axis. For the through-flow solution the axial velocity w is
everywhere constant. These two linear solutions can be superposed to
obtain solutions for three-dimensional flow through rotating axial-fiow

passages.

2617
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It is desired to determine the flow surface generated by the
motion of any fluid line that extends between boundaries in the rf-plane
and always consists of the same fluid particles. This fluid line
rotates with the fluid in the r6-plane and the surface that it generates
depends on the velocity w with which it moves in the axial direction
through the passage. Examples of such flow surfaces are shown in fig-
ure 3. The shape of these surfaces can be indicated on the rf-plane
alone by plots of the intersections of these surfaces with the ré-plane
at equal increments of 2. These intersections are the positions of the
£1luid lines on the r6-plenes at these values of z. If, instead of
increments of 2, however, fluid lines are plotted on the r6-plane for
increments of the sbsolute angle o that the passage has rotated about
the z-axis, these fluid-line positions apply for all values of w. For
a given value of o, the value of =z then depends on w and this rela-
tion is given by

. %= QW (6)
Thus the results of the combined solutions are plotted as fluid-line
positions in the rO-plane for equal increments of o and these results
(fig. 4(a), for example) apply for all ratios w of through-flow velocity
to blade-tip speed. The three-dimensional flow surfaces in figure 3
correspond to the fluid-line positions shown in figure 4(a) for w
equel to 0.6.

NUMERICAL. EXAMPLES

The results for three-dimensional flow through five rotating axial-
flow passages are presented in figures 4 to 8. The results are pre-
sented in the r6-plane by streamlines w* of the eddy-flow solution and
by fluid-line positions o of the three-dimensional flow surfaces. The
streamlines are designated by w*, which is defined as

*__¥

where the subscript min refers to the algebraic minimum value of V¥
so that w* varies from zero along the boundaries to 1.0 at the point of
minimum VY. The fluid-line positions in the r6-plane are indicated for
various values of the gbsolute angle o that the passage has rotated
about the z-axis from its initial position (a = 0) at which the £luid-
line positions are radial or circumferential lines. In conformity with
reference 5, flow surfaces with initial fluid-line positions that are
circumferential or radial lines are designated S~ or Sz-surfaces,

respectively.
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Passage configurations. - The geametry of the five axial-flow
passages investigated is described in taeble I.

TABLE I - GEOMETIRY OF AXTAT.-FLOW PASSAGES

Example |Hub-tip|Blade spacing Grid
ratio JAX?] spacing
Th |radians| deg

I(standard)|0.70000|0.17834|10°13" | (A6/8) = 0.02229
II .70000| .08917| 5° 7' | (A6/8) = .01115

ITI .70000| .35667[20026' | (A6/8) = .04458

Iv .50105| .17834|10°13' | (A9/8) = .02229

v .89453| .17834|10°13' | (A9/16)= .01115

The results of the standard solution, exemple I, are compared with the
results of examples IT and IIT to determine the effect of varying the
blade spacing A6 with constant hub-tip ratio xry. The results of
example I are also compared with examples IV and V to determine the
effect of varying r, with A6 constant. The grid spacings used in
the relaxation solutions are given in the last column of the table.

Standard solution. - Results for the standard solution (example I)
are presented in figure 4. In figure 4(a) are shown fluid-line posi-
tions of the central flow surfaces for various values of the angle a.
The central flow surfaces are defined as those surfaces for which the
fluid lines pass through the point of minimum ¥, that 1s, W* = 1.0.
At this point, values of u &and v are both zero so that the central
flow surfaces pivot about a straight line in the z-directlon through

this point.

In figure 4(b) are shown the fluid-line positions of off-center
Sj1-surfaces for various values of the angle «. TFor any off-center flow
surface, the envelope of the fluid-line positions for various values of
o 1is a streamline. This fact is clearly shown by the upper Sj-surface
in Pigure 4(b) which is tangent to the streamline 0.8.

Fluid-line positions of off-center Sp-surfaces for various values
of @ are shown in figure 4(c). Finally, in figure 4(d), are shown
fluid-line positions of the central 8j-surface for a wide range of «.
As o increases, the surface becomes progressively more distorted because
its velocity in the rO-plane along the boundaries near the corners is
low, becoming equal to zero at the corners, whereas the velocltlies along
most of the other eddy-flow streamlines approach & wheel-type distribu-
tion with zero velocity at w* = 1.0. It is concluded that, for large
values of the absolute angle o, the flow surfaces become greatly

distorted.
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Solutions for effect of blade spacing. - Examples II and IIT are
presented in figures 5 and 6. These figures, together with figure 4(a),
indicate the shapes of the central flow surfaces for three blade spacings
A9 with the same hub-tip ratio =rp. The general appearance of the
centrel S;-surfaces is similar for examples I and IT, and in example ITI
the S1- and Sg-surfaces are similar. Reasons for these similarities are
given in DISCUSSION OF RESULTS.

Solutions for effect of hub-~tip ratio. - Examples IV and V are
presented in figures 7 and 8. These figures, together with figure 4(a),
indicate the shapes of the central flow surfaces for three hub-tip ratios
ry, with the same blade spacing A8. The general appearance of the
central Sj-surfaces of examples I and IV is similar, and the S;- and .
8p-surfaces of example V are similar to the Sz- and Sj-surfaces, respec-
tively, of example I. Also, it is noted that the central 5;- and S2-
surfaces of examples II and IV are similar in general appearance. Rea-
sons for these similarities are given in DISCUSSION (OF RESULTS.

DISCUSSION OF RESULTS

Some of the results presented in figures 4 to 8 are discussed, and
the deviations of the flow surfaces from their initial positions for o
equal to zero in the rO-plane are investigated.

Typical value for o. - The results in figures 4 to 8 are presented
as fluid-line positions in the r6-plane for even increments of . As
already defined, « is the absolute angle that the axial-flow passage
has rotated sbout the z-axis, with a equal to zero when the initial
position of the fluid line is a circumferential line -(Sj-surface) or
radial line (Sp-surface) in the r6-plane. This angle a 1is related to
the geometry and operating conditions of the axial-flow passage by
equation (6). In order to determine a typical value for o, an axial-
flow stage is considered with )

w' = 550 ft/sec

Zl

0.12 £t (1.44 in.)

w!

I

838 radians/sec (8000 rpm)

where the prime superscript indicates dimensional quantities. Equa-
tion (6) becomes

= 0.183

z'w!
a = =
W
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so that a typical value for o 1s approximately 0.2. From figures 4 to
8 it is therefore concluded that the deviation of flow surfaces in
typical axial-flow blade rows is not large. This conclusion 1s further
strengthened if the fluid-line position for a equal to zero is con-
sidered to occur halfway through the blade row. Then the maximum
deviation of the surface from its position at o equal to zero is
reduced by approximately one half.

For blade rows (not necessarily axial flow) with relatively large
dimensions in the direction of flow, such as radial- and mixed-flow
impellers, the deviations of the flow surfaces must be large. However,
even these large deviations do not invalidate the two-dimensional solu-
tions completely, because, as shown in reference 8, at many positions
in the passage the velocity components of major importance are much the
same for two- and three-dimensional solutions.

Deviation of flow surfaces. - The deviation of flow surfaces from
their initial orientation, given by £luid-line positions in the r6-plane
at a equal zero, can be described by three factors (fig. 9): (1)
displacement, in the r6-plane, of the tangent point between the fluid
line and the tangent streamline; (2) rotation, in the ré-plane, of the
£luid line about this tangent point; and (3) distortion or bending of
the fluid line in the rf-plane. The displacement of the tengent polnt
is determined by its motion in the r6-plane along the streamline with
which the fluid line is tangent. This displacement for off-center 8;-
and Sp-surfaces is indicated in figures 4(b), 4(c), and 9 and will not
be discussed further. For central flow .surfaces, which will be con-
sidered exclusively hereinafter, the tangent point (center point) does
not move and the displacement is zero.

The rotation of central flow surfaces will be measured by the angle
B - Bp which the tangent to the fluld line at its center point rotates
in the rf-plane from its initial position Bp at o equals zero
(fig. 9). The angle B is measured clockwise from the radial direction
so that Bo dis 900 for S;-surfaces and 0° for Sp-surfaces.

The distortion of the f£flow surfaces will be discussed qualitatively.

Rotation of flow surfaces. - The rotation of central flow surfaces
is measured by the angle B - By introduced in the preceding section.
This angle cen be measured in figures 4(a) and 5 to 8. However, an
equation has been developed (appendix B) by which the rotation B - Bg
can be determined directly from o and a parameter A, which is the

value of 23% rat the center point.
) r

2617
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For central 8;-surfaces

ten(p - By)y = - A/Z—Aé t&n[a. NAZ - B | (7a)

and for central Sp-surfaces

ten(s - Bo)z = - Az ten [ o A/AZ - B)] (70)

so that the rotations of the two types of central flow surface are
related by

tan(p - Bo)y = (2; ) tan(p - Bo)a (7c)

In perticulsr, for A equal to 1.0,
(B-Bgli=(B-Bga=a (7d)

so that the rotation of both flow surfaces are equal to the rotation «
of the passage about the z-axis.

As will be discussed later in this section, the parameter A 1is
1n l'h In I'h
primarily a function of N If 35 is zero, that is, if Ty is
1.0 and A8 1is finite, v and —8% are zero at the center point and

equation (3a) gives

v
5= -2
from which
. \ 5211:' v
A= L= - F = 2
arz T
1n E3N
Also, if is infinite, that is, if A8 is zero and rp 18 less

A0
than 1.0, ?T; is zero at the center point so that.

A= az—‘l' = -0
3r2 or
In I'h
Thus, the perameter A varies between O and 2.0 as ——55— varies

between -® and O. For A equal to O, equations (7a) and (7b) become
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tan(B - Bg)y = -2 . (7e)

and

tan(p - 30)2 = 0 (7£)

Likewise, for A equal to 2.0, equations (7a) and (7b) become

tan(B - Bg)y = O (7g)

tan(B - Bglg = -20 (7h)

The rotation (B - Bg)y of central Sj-surfaces has been computed

by equations (7a), (7e), and (7g) and is plotted in figure 10 as a func-
tion of o for various values of A. The rotation (B - Bglp of

central Sp-surfaces 1s also given by figure 10 if the curves of constant
A are numbered in reverse order. Thus, dlscussions relating to the
rotation of central Sj-surfaces with parameter A equal to x also
apply to the rotation of central Sp-surfaces with A equal to (2 -~ x).

In figure 10 the curve for A equal to zero is asymptotic to ﬁ/Z,
or 1.5708. For this value of A, the passage width is zero (A8 = 0),
and the central Sj-surface cannot rotate more than /2 radians. For
A equel to 2.0, the rotation (B - Bp); is zero at all values of a.

For this value of A, the passage height is zero (ry = 1.0), and the

central Sj-surface cannot rotate. As indicated by equation (7d), a
linear relation exists between (B - Bg); and « for A equal to 1.0.

As will be shown later in this section, for this value of A the average
passage width is approximately equal to the passage height (example III,
fig. 6), and both the central Sq- and Sp-surfaces rotate at the same
raete as the pessage itself, but in the opposite direction. TFor the
remaining values of A, the curves in figure 10 have inflection points
at (B - Bg)] equal to =/2, x, and so forth. For values of A less

then 1.0, the rate of change of (B -~ Bg); with o is minimum at

(B - Bg)y equal to %, 3’2—‘, and so forth, and is maximm at (B - Bgy)y
equal to x, 2x, and so forth. For values of A greater than 1.0, the
reverse is true. In all cases, the rate of change of (B - Bo)l with
a 1is greatest when the tangent to the £filuid line at its center point is
oriented in the direction of minimum distance between passage walls and
is least when the tangent is oriented normal to the directlion of minimum

distance. This observation is reasonable because, as indicated by the
streamline spacing for examples I to V, the gradient of the velocity

2617
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component normal to the tangent of the fluid line at its center point,
which velocity gradient ceuses the fluid line to rotate about its center
point, i1s maximum when the tangent is oriented in the direction of min-
imum distence between passage walls and is minimum when the tangent is
oriented normal to the direction of minimum distance.

The parameter A, which determines the rotation of the central flow
r
surfaces, is primerily a function of the ratio Aeh' The values of A

for examples I to V have been obtained from the relaxation solutions and
are given in table II together with the values of

TABIE IT - VALUES OF PARAMETER A

In rh
Example| A —35
I 0.314( -2
IT L1134 -4 ®
ITT [1.020| -1
v .240 -3%
5
A 1.535 5

In Ty In Th ,
<5 These values of A and 5 are plotted in figure 1i. As
previously discussed, the parameter A 1s equal to 2 and zero for

lnrh

equal to zero and -, respectively. It can be shown analytically

In
that the curve in figure 11 has zero slope for —A-eihi equal to zero.

As _AZE verles from zero to -o, the passage geometry in the rf-plane
varles from a wide shape with zero height in the r-direction to a tall

ln r
shape with zero width in the 8-direction. For Aeh equal to —1.0,
the passage geometry is square in the {6-plane and the average passage
width in the ré-plane is approximately equal to the passage height
(example III, fig. 6).
In I‘h
2o because passages with
the same value of D have geometrically similar boundaries in the

§0-plane, where the solution of equation (5), which solution determines

A, is obtained. The right side of equation (5) indicates, however, that

the solution of equation (5), and therefore the value O{n A, depends not
r

only on the passage shape in the £6-plane, that is on Teh’ but also
on the corresponding values of r at each value of £. Thus, the

The parameter A is a function of
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value of A must also depend on the hub-tip radius ratio 1r,. However,
figure 11 shows that rp has only a small effect on A for the range
of ry investigated.

For the range of « investigated by the numericel examples
(02 @ £1.0), figure 10 shows that the variation in (B - Bg)y with «
is similar for 0 < A< 0.3 (also compare examples I, II, and IV in
figs. 4(a), 5, and 7, respectively); and, if the curves of constant A
are numbered in reverse order, figure 10 indicates the variation in
(B-Bolp with « is similar for 1.7 £ A =< 2.0. In both cases the

rotation of the central flow surfaces is similar for the specified range
In r
of A because for this range the corresponding values of —Tﬁﬁg

(fig. 11) are such that the passage walls parallel to the initial posi-
tions (a = 0) of the central flow surfaces are too far removed to

exert an important influence on the rotation (B - Bo), which is therefore

affected primarily by the angle ao. It is therefore concluded that:
In r ; .
——ZEE algebraically less than -2, the rotation of
central Sq-surfaces is about the same for o 1less than 1.0; and (2) for
lnrh
A6
tral So-surfaces is about the same for o l1ess than 1.0.

(1) For values of

élgébraically greater than «0.5, the rotation of cen-

values of

Distortion of:flow surfaces. - Factors affecting the distortion of
the flow surfaces are evident from figures 4 to 8. 1In general, a sur-
face becomes distorted if (1) the fluid line that generates the surface
approaches the vicinity of & corner in the rg-plane and (2) the center,
or tangency point of the fluid line, moves closer to one of the passage
boundaries. The relative importance of these factors depends on the
particular passage geometry and the orientation of the f£low surface.
From figure 4(b), if the fluid line of the off-center flow surfaces is
initially oriented (o = 0) normal to the longer side of the passage
boundary, the first factor is of major importance. From figure 4(c), if
the fluid line of the off-center flow surfaces is initially oriented
parallel to the longer side, the second factor is most important. For
central flow surfaces, only the first factor exists.

It is clearly evident from figure 4(d) that for values of o con-
siderably larger than 1.0 the flow surfaces become greatly distorted.

In r .
Aeh’ - Teble II and figure 11 indicate an approximate
In r
correlation of the paremeter A with the ratio —ﬁaég. Because A is

an importent parameter in the calculation of the rotation (B - Bg) by

Effect of

L9T2
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Inr
equation (7), this correlation suggests,that ~—

parameter affecting the shape of the flow surfeaces.
In T ' J
In table II the value of 5 is nearly the same for examples II

and IV, and a comparison of these examples in figures 5 and 7 indicates
great similarity in the shape of the flow surfaces. Also, in table IT,
in I'h AB

R for example I and n

order of magnitude. A compérison of the Sl-‘and So-surfaces of example I
in figure 4(a) with the Sp- and 8-surfaces, respectively, of example V

in figure 8 indicates considersble similarity. It is therefore concluded
In r

that, for the same value of -—ZE%% or its inverse, axial-flow passages

of the type investigated have similar shapes of flow surfaces.

is an important

for example V are of the same general

~ SUMMARY QF RESULTS ARD CONCLUSIONS

Three-dimensional, incompressible, nohviscous , absolute irrotational
fluid motion is investigated for f£low through rotating axial-flow pas-
sages bounded by straight blades of finite spacing and infinite axial
length lying on meridional planes. Solutions are-obteined for five pas-
sage geometries described by various ratigs of the logarithm of the hub-

r
tip ratio divided by the blade spacing —1559, and the results are
presented in such a manner as.to apply for all ratios of axial velocity
to passage tip speed.

The solutions are used to determine the deviation of flow surfaces
from their assumed orientation in the usual type of two-dimensional )
solution. This deviation is shown by the fluid-line positions (inter-
gsections of the flow surfaces with the r6-plane) for equal increments of
the angle o that the passage rotates gbout the z-axis as the flow
surface deviates from its initial orientation. The deviation is con-
sidered to consist in (1) displacement in the rf6-plane of the center
point of the fluid line, (2) rotation in the r6-plane of the fluid line
about its center point, and (3) distortion of the fluid line in the
rf-plane.

Two types of flow surface are considered: S;- and Sp-surfaces
initially oriented along circumferential and radial lines, respectively,
in the r6-plane. The surfaces are central flow surfaces if they pass
through the point of zero relative velocity at the passage center in the
rf-plane; otherwise, the surfaces are off-center flow surfaces.
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Some results of the numerical examples are:

1. The central flow surfaces rotate relative to the passage gbout
a straight axial line through the point of minimum stream function near

the center of the passage in the ro-plane.

2. For any off-center flow surface the envelope of the fluid-line
positions in the rf-plane for various values of o is a streamline.

Some conclusions resulting from the numerical examples are:

1. For values of a corresponding to conditions in typical exial-
flow blade rows, the deviation of flow surfaces is not large.

2. FYor values of a 1less than 1.0 radian, the rotation of the
In r
central S;-surface 1is about the same in all passages for which —7552

is algebraically less than -2.0.

3. For values of o 1less than 1.0 radian, the rotation of Eﬁe
- ~ ! r
central Sp-surface is about the same in all passages for which -_ZEE

is algebraically greater than -0.5.

4. In general, a flow surface becomes distorted if (a) the fluid
line that generates the surface approaches the vicinity of & corner in
the rO-plane and (b) the center point of the fluid line moves closer to

one of the passage boundaries.

5. For values of a consliderably greater than 1.0 radian, the flow
surfaces become greatly distorted.

ILnrh

6. For the same value of ~25 >’ axial-flow passages of the type

investigated have similiar shapes of flow surfaces.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, August 1; 1952
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APPENDIX A

SYMBOLS

The following symbols are used in this report. All symbols are
dimensionless, unless otherwise specified. Velocities are expressed as
ratios of the passage-tip speed; distances are expressed as ratios of
the passage-tip radius.

A

r,0,z

u,v,w

2
parameter, which is the value of g—% at the center point
r

(¥* = 1.0) about which the central flow surfaces rotate,
equation (B3a) of appendix B

cylindrical coordinates relative to rotating passage (fig. 1)
flow surface Eenerated by motion through passage of any f£luid
line conelsting of the same fluid particles and extending

from one boundary to another in ro-plane
arc length along flow surfece in r6-plane

relative velocity components in r, 8, z directions, respectively,
(fig. 1)

absolute angle that passage has rotated about z-axis from
initial position at which fluid lines for S;- and Spz-surfaces
are clrcumferential and radial lines, respectively, in
ro-plane '

angle of tangent to flulid line at its center point in r6-plane,
measured clockwise from radial direction

blade spacing in rO-plane

transformed coordinate, equation (4)

stream function in r-plane, equation (2)

stream function ¥ divided by V¥ , , equation (7

relative angular velocity of elemental arc ds, of central flow
surface, rotating about point ¥* = 1.0 in r6-plane, expressed

as retio of w'

absolute angular velocity of passage about z-axis, dimensional
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Subscripts:

h hub (so that v} is hub-tip ratio)
min minimum

0 initial position, when o equals zero

1 flow surface with circumferential line for initial position of
fluid lfine in r6-plane

2 flow surface with radial line for initial position of £luid line
in r6-plane
Superscript:

! dimensional quantities

2617
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APPENDIX B

ROTATION OF CENTRAL S,- AND S,-SURFACES ABOUT THEIR CENTER POINT
IN r8-PLANE

If 2 is the relative angular velocity, expressed as a ratio of

) the absolute angular velocity of the passage about the z-axis, of an
2 elemental arc length ds rotating about the point y* = 1.0 in the
~ r9-plane, then from figure 12
st:avdscosﬁ—aud.ssinﬁ' (BL)
E) 38
where
ov _ovdr , dv dd OJv 1 ov
= —_— —_— —
S ras AT Sr oS BtIgseinB (B1a)
and
> : ? %Ecosﬂ+l%sinﬁ (B1b)

At the point for V* = 1.0, however, u and v are equal to zero and,
because the streamlines are normal to the passage center line,

-2% =0 (B22)

so that the continuity equation (1) gives

LA (B20)

and equation (3a) becomes
u
5 2 + = (B2c)
From equations (Bl) and (B2)
Q= %% (cos? B - sin®g) - 2 sin2p

or, from equation (2b),

-Q =A + 2(1 - A) sinp (B3)
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Where
2
oy
A=— B3a
o2 (B38)
Also, it can be shown from the definition of 2 +that
= 88
Q = da
so that, from equation (B3),
B
a= - a8 _
A+ 2(1 - A) sinZB
0]

o = L _1 2 - A -1 2 - A
g [ (T ) - (e

For central Sj-surfaces, By equals 90° so that

ten By = 4,2—%—5 ta.n[%- mm:l

and

tan(p - Bo)y = - AP ten [ o VA(Z - B)] (70)

For central S,-surfaces, BO equals O so that
tan By = /\’ ta.nl: anfA(2 - :l)

and

tan(p - Bo)z = - Ao ten [ A/A(Z - B (7o)
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Flgure 1. - Cylindrical‘coordinates and veloclty
components relative to rotating passage.
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v
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Flgure 2. - Fluld particle
in r6-plane.
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Direction of

1
'

S1-surface ’ CD-2656
i

Figure 3. -~ Central 8,- and S,-surfaces for example I wlth axial velocity w
equal to 0.6.
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Direction of rotation

S8p-surface
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Angle, 6/A8
(a) Gentral 8- and S,-surfzoes.
Pgure 4. - Fluid-line positicns of flow surfaces for
emple&]ﬁ. Bub-tip ratio, Iy, 0.7000; blade spaolng,
ae, 10 'y minisum value of ¥, -0.00824.

Idreation of rotation

.2 W
0 | N I+ I O |
T 1 1 3 1 B L)
© § T 3§ 5% Tg b
Angle, 6/A8

{b) Off-center 3;-surfaces.
e 4. - Contimed. PFluild-lins positione of flow

surfaces for exampla I. Hub-tlp ratlo, ry, 0.70003
blede spacing, A8, 10913'; minimm value of ¢,
-0.00524.
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Direction of rotation
———
Sp-surface L
N
1.00

N =)
OJ)FN

=
af1,0

Ao )

.sni'; 1T / ol
N
é .85

SN,

8482848
Angle, 6/A0

Filgure 5. - Fluid-line positions of central
81~ and Sp-surfaces for example II. Hub-
tip ratio, ry, 0.7000; blade spacing, A9,
5°7'; minimum value of 3, -0.00157.
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Directiaon of rotation
e f

Se-surface

1.00
~.4 .2 0 a
.6
1.0
.8 vd
.95 { a/1.0 .8
.6
8, -surface
re
.4
.90
|1
8647 (o)
.85
.80
2
)
3 w*
] 0.8
3
.15
.10
.65 -6
}
60—
.4
55
.2
L&,.I—°l— R
.5011 1 5 3 7

1 3
g1z I’
Angle, 8/A8
Pigure 7. - Fluid-line positions of central S8;- and

Sa-sur!‘aces for example IV. Hub-tip ratio, rp,

0.50105; blade spacing, A8, 30°15¢'; minimum value
of ¢, -0.005&4.
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Direction of rotation

——

Sz-surrace
Al

a
.08
.6 S,-surface
o 4
a 2
3
3 -
= 0.8
.6
.4
=l “_NACA
.90 | ] Q I
1 1 5 1 5 3 7
° 3§ I § ¥ T T ¥® 1

Angle, 6/40

Figure 8. - PFluid-line positions of central S
for example V. Hub-tip ratlo, , 0.894535;

11—) and Sp-surfaces
1
10°13t; minimum value of ¥, -0.00231.

ade spacing, AS,
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Directlion of rotation

——
Fluid-line positions
of S;-surface a>0
° a=20
S ———
Tangent to fluild .
line of Sp-surface Displacement
of tangent
polnt
Streamline

_l_

point Orientation
for a =0

Detaill A showlng
rotation (B - Bo)l
at tangent point of
fluld-line for
a >0

<A

Figure 9. - Definitions of terms used to describe deviation
. of flow surfaces from initial orientation in ré-plane at

a=1.0.
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Figure 10. - Variation in rotation (B - Bo)l of central 8;-surfaces wilth angle a.

Equation (7a).




Parameter A

kN .
N o 0.70000
\ o 89453
o .50105
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-
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Figure 11. - Varilation in parameter A with for examples I to V.
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A du
BEGB
ov
rdo BEGB
A L o
dr ds
B
Q
* _ _@
¥v¥=1.0 I,

Flgure 12. - Elemental arc ds of a fluld line rotating about
point at which stream function ¥* = 1.0 in r6-plane.
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